JOURNAL OF
THE
MUSICAL BOX
SOCIETY OF
GREAT BRITAIN

JOURNAL OF
THE
MUSICAL BoX SOCIETY OF GBEAT BRITAN

选aith 殖arding

MORE THAN A SHOP

Books.Materials.Spares.Repairs.

A CENTRE FOR MUSICAL BOX

ENTHUSIASTS
Tel: 01-607-6181 or 3761 Open: 10a.m.to 6p.m.
Vol. 4 Number 3 AUTUMN 1969 CONTENTS Page
Observations on the Automaton Chess Player (1819) 159
An Account of the Mechanism of an Automaton (1742) 187
by M. Vaucanson
How to Make a Statue Speak (1822) 211
Jean Billon-Haller tune-sheet 213
Frank Greenacre Collection pictures 214
John Langshaw barrel organ 216
Unusual singing bird 217
About Barrel Organs 218
v by Percy A. Scholes
Letter from The Secretary 223
H. Lecoultre snuff-box 224
Euterpeon concert bill 225
John Leech's cartoon 226
Pianos Melodieux advertisement 227
J.M. Grob's mechanical piano- player advertisement 228
Advertisements 229
Lochmann Konzert Piano 230
Letters to the Editor 231
List of Members 232
Published by
The Musical Box Society of Great Britain,11, Devonshire Place, Wimpole Street,LONDON, W. 1.

Hon. Editor : Arthur W.J.G. Ord-Hume.

The Editor writes:

IT IS GETTING on for four years since the passing of John Clark, our first President. Those of us who were fortunate in knowing him will certainly still recall his guidance and enthusiasm during the burgeoning days of our Society. As with every other sphere of knowledge, we all had to start somewhere and that somewhere inevitably meant "Clarkey". He was probably the last of the breed of men who actually served their time with musical box makers. He was in towards the tail end of their era and later emerged as a sole surviving figure as the industry crumbled about him in the face of war, progress and obsolescence.

How amazed, I am sure, would he be today if he could see the way in which we, his "apprentices", were carrying on with the musical box! Collectively as a Society we have researched more history than Clarkey could ever know. We have talents which he would salute with that deep chuckle of his. Why, we are already making new major assemblies for mechanical musical instruments, new cases - even new music. Inspired by our joint efforts, Members are perfecting and cultivating techniques which are of immense value and interest. Some are engaged in research into history and are uncovering fascinating material. One of our Founder Members has, for example, just completed a detailed investigation into the ramifications of Nicole Freres and their associates which is astonishing in its revelations. A detailed article on this is expected to be featured in our Christmas issue.

My dictionary says that a Society is an association of persons united by a common aim or interest or principle. So long as we remember this and so long as we sustain our interest, the mechanical musical instrument will continue to flourish in the light of better ${ }^{\text {k }}$ knowledge and understanding - a living link with an age which many of us may aver to have been filled with at least the same amount of wonderment as the space-age.

ter automaton chesg plater.

From the library of The Editor

OBSERVATIONS

い5 Tite

Automatan

CHESS PLAYER.
 Now exhibited in londun.

$A T$

4, SPRING GARDENS.

BY AN OXFORD GRADEATE.

_ut speciosa debinc miracula promat.-Hor.

lionoon:

PIRINTED FOR J. HATCHAND, no. 100, ofposite albany, piccadilly;
and sold wy all the bookselleks.
1819.

Price One Shilling.

PREFACE.

T_{HE} science of mechanics is one of those in which the ingenuity of modern artists appears with superior advantage. The ancients, with the single exception of Archimedes, had but an imperfect knowledge of the mysteries of this science, as their attempts in the construction of instruments for marking time; and of the organ, sufficiently prove. This inferiority may be accounted for upon the principle, that the highest discoveries in mechanies do not depend upon the capacity, however ena 3
larged, of any individual, but upon the successive discoveries of many individuals, during ages, combined at length, by some powerful genius, and directed to the completion of one great object. Hence it was reserved to modern times, to witness the invention of those exquisite and grand combinations of mechanism, which are displayed in the numerous kinds of watch and clock work, and in the higher order of wind instruments, in their several varieties: and hence the present age has produced the most finished, pieces of mechanical science, in the Flute-player of Monsieur de Vaucanson, the Trumpeter of Maelzel *, the Panharmonicon of Mr.

[^0]Gurk, and the Apollonicon of our celebrated native mechanicians, Messrs. Flight and Robson*. Notwithstanding, howcver, the superior ingenuity of modern artists, in mechanics, which these scientific inventions discover, it seems to be a thing absolutely impossible, that any piece of mechanism should be invented, which, possessing perfect mechanical motion, should appear to exert the intelligence of a reasoning agent. This seeming impossibility is surmounted in the construction of the Automaton Chess Player. The stretch of invention shown in this unparalleled instance of mechanical skill, will

* This grand instrument, which performs by mechanical action, or may be played upon by five professors at once, is shown at the rooms, No. 101, St. Martin's Lane.
be fully appreciated only by those who can form an estimate of the variety of combinations amongst the pieces which a game of Chess presents : the constant exercise of acute judgment required in anticipating the designs of an antagonist, or in frustrating those which cannot be foreseen; and the experience in the game, which must be attained by any individual, before he can become qualified to be a skilful Chess Player. Some accurate notion, however, of the surprising powers which the inventor of this singular piece of mechanism has displayed, even they who are unacquainted, or but slightly acquainted, with the game of Chess, may derive from a faithful description of it, with respect to its construction, so far as that can be explained, and its general manner of work-
ing. Such a description, likewise, may be acceptable to those who are adepts in the game, to call to their recollection, any interesting circumstance relating to the Automaton, which they may have forgotten ; and to be a slight memorial of a masterpiece of human ingenuity which excited their liveliest curiosity and admiration.
" Indocti discant, ament meminisse periti."

OBSERVATIONS,

$$
\oint c .
$$

The celebrated piece of mechanism, called the Automaton Chess Player, was the invention of Wolffgang de Kempelen, a Hungarian gentleman, Aulic Counsellor to the Royal Chamber of the domains of the Emperor in Hungary. His genius for mechanies appeared in early life; and when matured by study, and experimental observation to which the leisure that his employment afforded him, was chiefly devoted, displayed itself in various inven-
tions and improvements of great public utility.

Being at Vienna, in the year 1769 , upon business of office, he was invited, by order of the Empress Maria Theresa, to be present at certain experiments of magnetism, which were to be exhibited before herself and the Imperial court, by a Frenchnam, of the name of Pelletier. During the exhibition, M. de Kempelen, who was honoured with the familiar conversation of the Empress, dropped a hint that he thought himself competent to construct a piece of mechanism, which should produce effects far more surprising and unaccountable than those which she then witnessed. The curiosity of the Empress being strongly raised, she expressed a lively desire to see his idea carried into exccution, and drew from him a promise that he would gratify ber wishes
without delay. M. de Kempelen kept his word ; and within the space of six months completed his Automaton Chess Player.

At Vienna, where it was first produced, it excited the highest astonishment and admiration of the Empress and her court, and of many illustrious and scientific persons, who examined its extraordinary powers. The report of them quickly spread; and the newspapers of the time speak of them in unmeasured terms of approbation. The inventor, however, with that indifference to popular favour which characterizes true genius, not only declined making a public exhibition of his Automaton, and refused considerable pecuniary offers from persons desirous of purchasing it ; but in his ardour for prosecuting some new mechanical pursuit, actually laid it aside, and even proceeded in part to take it to pieces.

In this disordered state it remained during many years, when, on the occasion of a visit made by the Grand Duke Paul, of Russia, with his consort, to the court of Vienna, the Emperor Joseph II. recollecting the invention of M. de Kempelen, signified a wish that he should exhibit it for the gratification of these august personages. In the course of five weeks, the numerous repairs which it required, were completcd by the indefatigable genius of its inventor; and on being produced before the Imperial visiters, it excited no less astonishment and admiration than at its first appearance. Upon this occasion, M. de Kempelen was urged and prevailed upon to satisfy general curiosity by exhibiting it publicly in Germany and in other countries. Accordingly, the Emperor having granted him permission to absent himself from the duties of his employment during two years, he travelled with his Automa-
ton, into various parts of Germany and to Paris; and in the year 1785, he visited England. At his death, which took place about the year 1803, the Automaton came into possession of his son, who sold it to the present exhibiter, a man, apparently of great ability in the science of mechanics, and inferior only to M. de Kempelen himself.

This short historical notice, touching the inventor of the Automaton Chess Player, and the circumstances which led to its invention and first exhibition, naturally precedes a description of the Automaton itself.

The room where it is at present exhibited, has an inner apartment, within which appears the figure of a Turk, as large as life, dressed after the Turkish fashion, sitting behind a chest of three feet and a half in length, two feet in breadth,
and two feet and a half in height, to which it is attached by the wooden seat on which it sits. The chest is placed upon four casters, and together with the figure, may be easily moved to any part of the room. On the plain surface formed by the top of the chest, in the centre, is a raised immoveable chess-board of handsome dimensions, upon which the figure has its eyes fixed; its right arm and hand being extended on the chest, and its left arm somewhat raised, as if in the attitude of holding a Turkish pipe, which originally was placed in its hand.

The exhibiter begins by wheeling the chest to theentrance of the apartment within which it stands, and in face of the spectators. He then opens certain doors contrived in the chest, two in front, and two at the back, at the same time pulling out a long shallow drawer at the bottom of the
chest made to contain the chess men, a cushion for the arm of the figure to rest upon, and some counters. Two lesser doors, and a green cloth screen, contrived in the body of the figure, and in its lower parts, are likewise opened, and the Turkish robe which covers them is raised; so that the construction both of the figure and chest internally is displayed. In this state the Automaton is moved round for the examination of the spectators; and to banish all suspicion from the most sceptical mind, that any living subject is concealed within any part of it, the exhibiter introduces a lighted candle into the body of the chest and figure, by which the interior of each is, in a great measure, rendered transparent, and the most secret corner is shown. Here it may be observed, that the same precaution to remove suspicion is used, if requested, at the close as at
the commencement of a game of Chess with the Automaton.

The chest is divided, by a partition, into two unequal chambers. That to the right of the figure is the narrowest, and occupies scarcely one third of the body of the chest. It is filled with little wheels, levers, cylinders, and other machinery used in clock-work. That to the left contains a few wheels, some small barrels with springs, and two quarters of a circle placed horizontally. The body and wer parts of the figure contain ceriain tubes which seem to be conductors to the machinery. After a sufficient time, during which each spectator may satisfy his scruples and his curiosity, the exhibiter recloses the doors of the chest and figure, and the drawer at bottom; makes some arrangements in the body of the figure, winds up the works with a key inserted into a small
opening on the side of the chest, places a cushion under the left arm of the figure, which now rests upon it, and invites any individual present to play a game of Chess.

At one and three o'clock in the afternoon, the Automaton plays only ends of games, with any person who may be present. On these occasions the pieces are placed on the board, according to a preconcerted arrangement ; and the Automaton invariably wins the game. But at eight o'clock every evening, it plays an entire game against any antagonist who may offer himself, and generally is the winner, although the inventor had not this issue in view as a necessary event.

In playing a game, the Automaton makes choice of the white pieces, and always has the first move. These are smin 13
advantages towards wimning the game which are cheerfully conceded. It plays with the left hand, the right arm and hand being constantly extended on the chest, behind which it is seated. This slight incongruity proceeded from absence of mind in the inventor, who did not perceive his mistake till the machinery of the Automaton was ton far completed to admit of the mistake being rectified. At the commencement of a game, the Automaton moves its head, as if taking a view of the board; the same motion occurs at the close of a game. In making a move, it slowly raises its left arm from the cushion placed under it, and directs it towards the square of the piece to be moved. Its hand and fingers open on touching the piece, which it takes up, and conveys to any proposed square. The arm, then, returns with a natural motion to the cushion upon which it usuaily rests. In taking a
piece, the Automaton makes the same motions of the arm and hand to lay hold of the picce, which it conveys from the board; and then returniug to its own piece, it takes it up, and places it on the vacaut square. These motions are performed with perfect correctness; and the dexterity with which the arm acts, especially in the delicate operation of casting, seems to be the result of spontancons feeling, bending at the shoulder, elbow, and knuckles, and cautiously avoiding to touch any other piece than that which is to be moved, nor ever making a false move.

After a move made by its antagonist, the Artomaton remains for a few moments only inactive, as if meditating its next move; upon which the motions of the left arm and hand follow. On giving check to the King, it moves its head as a signal. When a false move is made by its antago-
nist, which frequently occurs, through curiosity to observe in what manner the Automaton will act: as, for instance, if a Knight be made to move like a Castle, the Automaton taps impatiently on the chest, with its right hand, replaces the Knight on its former square, and not permitting its antagonist to recover his move, proceeds immediately to move one of its own pieces : thus appearing to punish him for his inattention. The little advantage in play which is hereby gained, makes the Automaton more a match for its antagonist, and seems to have been contemplated by the inventor as an additional resource towards winning the game.

It is of importance that the person matched against the Automaton, should be attentive, in moving a piece, to place it precisely in the centre of its square; otherwise the figure, in attempting to lay
hold of the piece, may miss its hold, or even sustain some injury in the delicate nechanism of the fingers. When the person has made a move, no alteration in it can take place : and if a piece be touched, it must be played somewhere. This rule is strictly observed by the Automaton. If its antagonist hesitates to move for a considerable time, it taps smartly on the top of the chest with the right hand, which is constantly extended upon it, as if testifying impatience at his delay.

During the time that the Automaton is in motion, a low sound of clock-work running down is heard, which ceases soon after its arm returns to the cushion; and then its antagonist may make his move. The works are wound up at intervals, after ten or twelve moves, by the exhibiter, who is usually employed in walking up and down the apartment in which the Auto-
maton is shown, approaching, however, the chest from time to time, especially on its right side.

At the conclusion of the exhibition of the Automaton, on the removal of the chess men from the board, one of the spectators indiscriminately is requested to place a Knight upon any square of the board at pleasure. The Automaton immediately takes up the Knight, and begimning from that square, it moves the piece, according to its proper motion, so as to touch each of the sixty-three squares of the chess board in turn, without missing one, or returning to the same square. The square from which the Knight proceeds is marked by a white counter; and the squares successively touched, by red counters, which at length occupy all the other squares of the board.

The description now given of the Automaton Chess Player, with respect to its construction, so far as that can be explained, and its general mamer of working, naturally suggests an interesting inquiry: What are the immediate causes by which its unparalleled phenomena are produced?

To this inquiry no satisfactory answer has yet been made. It is allowable, therefore, to hazard some observations in reply to it. The causes sought for appear to be two, which are distinct from each other -a moving force from which the left arm and hand of the Automaton derive the action peculiar to those parts of the body; and a directing force, by which the same arm and hand, when raised and prepared to act, are guided on this side or that, according to circumstances, many of which cannot possibly be anticipated, and each of which requires the exertion of the rea-
soning faculty, sometimes in a high degrec. To explain the nature of the moving force, which is employed, is the province of the professed mechanician, who can account for it upon fixed mechanical principles. The operation of that force at a certain time after each move of an antagonist, seems to depend upon the momentary interference of the exhibiter, who though usually employed in walking up and down, approaches the chest when theAutomaton is about to make a move (p.20), and appears to touch some spring, near to the arm of the figure, on the right side, which spring may set in motion the works by which the arm and hand of the Automaton are raised from the cushion, are made to bend at their several joints, so as to grasp the piece to which they may be guided by the directing force, and to retain it for a given moment of time, after which, on disposing of the piece, the arm and hand become relaxed, and are
brought back to their usual position. In case a piece is to be taken, or a false move is made by an antagonist, or the Automaton castles (p. 21), by a peculiar manner of touching the spring, these mechanical motions of the arm and hand might be repeated de suite; with a variation only in the return of the arm, which would not take place until the end of the repetition. But the mystery in the action of the Auto-maton-a mystery not less hard to be solved by professed mechanicians, than by persons unacquainted with the science of mechanics, arises from the nature and operation of the directing force by which the arm and hand of the Automaton, when raised and prepared to act by the moving force, are guided with a precision and judgment that baffles the skill even of experienced chess players. Various conjectures have been made upon this subject. It was supposed, for a time, that the di-
recting force was some conccaled luadstone, until the inventor of the Automaton showed the groundless nature of such a supposition, by permitting any person to place the most powerful loadstone in contact with the figure, or upon any part of the chest to which it is attached.

The most obvious solution of the nature and operation of the directing force may be drawn from the hypothesis, that a living subject is enclosed within the left or larger chamber of the chest, who guides the arm and hand of the Automaton when raised, either in this or that direction, according to the ever varying appearance of the game, which might be discerned through a transparent chess-board. It is sufficient, however, in order to refute this hypothesis, to repeat what has been already mentioned in page 17 , that both before and after the exhibition of the Auto-
maton, the exhibiter is willing to lay open for the examination of every spectator its entire construction internally, so as to satisfy the most incredulous person, that no concealment whatsoever of a living subject can take place.

With more semblance of reason, it has been conjectured that there is a communication between the left arm and hand of the Automaton, and a person placed in an adjoining room, who, though unseen, himself, is a spectator of the game; and that by means of this communication, the directing force required may be conveyed at the time when the arm and hand are raised. This conjecture, however plausible, may be answered by the statement of a plain fact, referred to before, that M. de Kempelen exhibited his Automaton, on two different occasions, at the Imperial palace of Vienna; and it is absolutely chimerical to suppose, that upon those occa-
sions, any communication could be opened with an adjoining apartment in the palace to that in which the Automaton was exhibited. Still the question returns, What is the nature and operation of the directing force, by which the left arm and hand of the Automaton when raised, and prepared to act, are guided?

With respect to the nature of this directing force, there can be only one reasonable opinion, that it must proceed from the immediate direction of some human agent; and since there is no communication with such an agent concealed within the chest, or in a room adjoining, it must proceed from the immediate direction of the exhibiter himself.

Nevertheless the operation of this directing force, or in what secret manner the exhibiter directs the arm and hand of the Automaton when raised, yet remains to
be explained. M. de Kempelen once threw out a hint, that the chief merit of his invention lay in the successful manner in which he deceived the spectators; by which hint he seemed to imply not only that the exhibiter does interfere in an unperceived manner in directing the arm and hand of the Automaton when raised, according to the varying circumstances of a game of Chess; but that the mode of such interference is very simple. In fact, when the arm and hand are raised and prepared to act by the operation of the moving force already explained, the action of a wire or piece of catgut, not much thicker than a hair, would be sufficient to guide them in any direction; which action, from the delicacy of the medium used, might be communicated in a manner wholly unperceived by the spectators*.

[^1]Probably the precise time and instrument of communicating this action, which are circumstances systematically kept secret, will never be discovered; and the conception of them, reflects the highest honour upon the ingenuity of the inventor. To constract an arm and hand capable of performing the ordinary functions of those parts, would be of itself sufficient to secure the reputation of an artist; but to make the same arm and hand almost counterparts of living members in a reasoning agent, displays a power of invention as bold and original, as any that has ever been exhibited to the world.
made to touch each of the 63 squares of the chess-board in turn, depends upon the action of machinery alone, without any interference of the exhibiter, except in previously winding up the works. The motions of the head of the figure, and its tapping on the chest (pp . 20-23), are a kind of hors d'œuvre.

THE END.

[^2]
A N

ACCOUNT

 OFTHE
MECHANISM
 0 FAN

automaton,
 0 R

Image playing on the German-Flute:

As it was prefented in a Memoire, to the Gentlemen of the Royal-Academy of Sciences at PARIS.
By M. V AUCANSON, Inventor and Maker of the faid Machine.
TOGETHERWITH
ADESCRIPTION of an artificial DUCK, eating, drinking, macerating the Food, and voiding Excrements, pluming her Wings, picking her Feathers, and performing feveral Operations in Imitation of a living Duck: Contrived by the fame Perfon.
AS ALSO

That of another Image, $n \mathrm{n}$ lefs wonderful than the firt, playing on the Tabor and Pipe; as he has given an Account of them fince the Memoire was written.
Tranjlated out of the French Original, by J. T. Desaguliers, L.L.D. F.R.S. Cbaplain to bis Royal Higbnefs the Prince of Wales.

[^3]

A N

ACCOUNT

OFTHE

MECHANISM of an IMAGE

Playing on the GERMANFLUTE, \&cc.
Prefented to the Gentlemen of the Royal Academy of Sciences,
By Mr. VAUCANSON, the Inventor of it.
Gentremen,

TirESS fenfille of the Applaufe of the Publick, than defirous of theHappinefs of deferving yours, I come to difcover to you, that it is only in following your Steps that I have been able to go on with fome Succefs in the Track I have purfued, for the Execution of my Undertaking. You will know your Leffons in my Work. It is only raifed on the folid Principles of Mechanicks, which I have taken from you.

To You I owe the Reflections I have made on the Sound of luftruments, on Mechanicks, and on the different Motion of the Parts wherewith Machines work. My Thoughts on the German-Flute will make the firt Part of this Memoire: And in the Second, I thall do my felf the Honour to give a Detail of the Pieces contain'd in my Work, their feveral Motions, and their Effect.

(4)

FIRST PART.

My firf Care has been to examine the Mouth of WindInftruments, to know well how to get Sound out of them, what Parts contribute to produce it, and how it may be modified.

You know, Gentlemen, that the Mouth of a German Flute differs from that of the other Wind-Inftruments, fuch as the common Flute, the Flageolet, and the Organ-Pipe; becaufe in thefe laft the Wind introduced at a narrow Hole, but which is determined, frikes the Parts of the Body of the Inftrument which are immediately under it, as the Bezel; and by the Quicknefs of its Return, and its Re-action upon the fmall Parts round about it, it fuffers a violent Collifion: Thus communicating its Vibrations to all the Parts of the Wood of the Flute, which in their Turn communicate them to the external Air round about them, it produces in us the Senfation of Sound.

But in the German-Flute the Mouth is undetermined, becaufe in that Inftrument the Wind paffes through a greater or fmaller Iffue, made by the greater or lefs Opening of the Lips, as they approach towards, or recede from each other; as they come nearer to, or are further from the Hole of the Flute; or as they advance more or lefs over the faid Hole.

All thefe Differences, which I reduce to four in the Mouth of the German-Flute, make it, in playing upon it, capable of a very great Number of Perfections, which are wanting in other Wind-Inftruments, whofe Mouth is determin'd; which I hall hew in explaining thore Motions.

The Sound being firft produced by the Vibration of the Air, and the Cmall Parts of the Body of the Flute,

(5)

is only determined by the Quicknefs or Slownefs of thofe Vibrations. If in an equal Time they are to be continued in a greater Number of the Parts of the Body ftruck, they will lofe more of their Motion, and confequently of their Swiftnefs; and thus, becoming flower in the fame Time, they produce a lefs lively Sound; and this makes the deep or low Tones.

This happens when all the Holes of the Flute are ftop'd. The Vibrations, which begin exactly at the Hole of the Mouth, mult be communicated to all the Parts of the Wood at the fame Time; therefore they are fuddenly weaken'd, becaufe their Force is divided among a great Number of Particles; which will make the Flute give the loweft Sound.

If you open the firft Hole next the Bottom of the Flate, the Vibrations find an Iffue fooner, which interrupts their Continuation in the reft of the Parts of the Body of the Flute: They have fewer Particles to ftike, (the Pipe being fhortned by opening the faid Hole) thus, lofing a little lefs of their Force, becaufe there are now fewer Particles among which they muft be divided, they will have a little more Swiftnefs; and being quicker in the fame Time, they will produce a lefs deep Sound, and that will be a Tone higher. The other Tones will rife gradually, as the upper Holes are unftopp'd.

When you come to unftop the Hole which is nearef to the Mouth, that Hale dividing the inward Space of the Flute into two equal Parts, the Vibrations will find an Iffue in the Middle of the Way that they are to run, to continue to the End of the Pipe; therefore they will go out with as much more Force and Velocity, having only half the Particles, among which they muft divide themfelves; and confequently will produce a Sound as

(6)

high again, which will be the Octare. But as a Part of thofe Vibrations is always communicated to the other half of the Body of the Flute, the Wind muft be forc'd a little, to produce in thofe Vibrations Accelerations, whic: by the Increafe of their Motion will fupply the Want of thofe that are loft in the other lanti of the Flute; then you will have a full Octave. That Note is alfo produc'd by fopping all the Holes of the Flute, as in that of the firft Octave: But then you mutt double the Force of the Wind, to produce double Vibrations in the whole Body of the Flute, which amounts to the fame Thing.

This is what is practifed in the Tones of the fecond Octave, where the Pofition of the Fingers and O pening of the Holes is the fame as in the Firf. You muft blow with a double Force to produce double the Number of Vibrations in the fame Time; which makes the fecond Octave: Becaufe the more or lefs acute Sound confifts in the greater or lefs Number of Vibrations in the fame Time.

Again, the Wind muft be given with a triple Force to produce the third Octave; but Vibrations, fo fuddenly redoubled, not finding fufficient Iffue in the firft Hole to hinder their going on in the reft of the Body of the Flute, becaufe of their extreme Swiftnefs, we muft be forced to open feveral Holes in the lower Part of the Flute; thus the Pipe being more open, the Vibrations will have a greater Iflue and a full and open Sound will be form'd, without being oblig'd to give the Wind quite a triple Force.

By this changing of Openings, different from what is required in natural Sounds, an Iffue may be given fooner or later, and greater or lefs, to produce Semi-Tones; which muf alfo be done in the laft high Sounds, where a quicker aid greater Iffue mult be given, that the Vibrations

(7)

Vibrations may not lofe their Velocity in communicating with too many Parts of the Body of the Flute.

What remains is to hew how the Wind is modified, and what are the Parts in a living Perfon which contribute to give it more cr lefs Force.

The Preflure of Pectoral Mufcles upon the Lungs drives the Air out of the Velicles tha: contain it: When this come up to the Mouth thro the Trackea Arteria, (or Wind-pipe) it goes out of it by the Opening which the Lips form as they are applied to the Hole of the Flute. The greater or lefs Force of the Wind defends, firft, upon the greater cr lefs Preflure of the Mufcles of the Brealt, which drive it out of its Receptacle ; fecondly, upon the greater or lels Opening of the Lips at its going out: So that when you wou'd blow weakly, the Mufcles then. muft act weakly, and the Lips making a large Opening, the Wind is driven flowly; and confequently its Return producing Vibrations equally flow, and ftill farther llacken'd by their Communication with all the Parts of the Wood of the Flute, low Sounds will be form'd.

But when you wou'd rife to the Octave, that is, produce Sounds as high again, the Mufcles muft aft with a little more Force; and the Lips, coming nearer together, muft a little diminifh their Opening; then the Wind being more ftrongly comprefs'd, and having a fmaller Iffue, will double its Swiftnefs, and produce double Vibrations, and thereby give Notes as high again, that is, the Octave. As you rife gradually to the high Sounds, the Mufcles will act with more Force, and the Opening of the Lips will be proportionably contracted, that the Wind, driven in a more lively Manner, and forced to go out at the fame Time by a fmaller Iffue, may confiderably increafe its Swiftnefs, and confequently produce accelerated Vibrations, which make acute Sounds.

(8)

But the German-Flute (as I have already faid) having this Difference from other Wind-Inftruments, that its Mouth is undetermined, the Advantages that arife from it, are that the Wind may be modulated by the greater or lefs Opening of the Lips, and by their different Pofition upon the Hole of the Flute, and by the Performer's being able to turn the Flute inwards or outwards. By this Means the Sounds may be fivell'd and diminifh'd, foften'd, and ftrengthen'd, produce Echoes, and give Grace and Expreffion to the Tunes that are play'd; which Advantages are not to be found in thofe Inftruments whofe Mouth is determin'd : which I hall hew in explaining the Mechanifm of the different Operations perform'd on the German-Flute

Sound confifting in the Vibrations of the Air produced by its Entrance into the Flute, and its Return upon that which fucceeds it; if, by a particular Pofition of theLips, it enters into the whole Bignefs of the Hole of the Flute, that is, goes thro' the longet Chord of the Hole, or the true Diametcr of it, (which is done by turning the Flute outwards) then it ftrikes a greater Number, of the Particles of the Wood, and at its Return finding an Iffue equally large, it communicates with a greater Quantity of external Air; and this produces the louder Sounds.

But when the Flute is turn'd inwards, the Lips cover more than half the Hole, the Wind going in thro' a fmaller Opening, and being able to return only thro' the fame, in order to communicate with the external Air, it can Arike only a lefs Quantity of it, which makes the Sound foft. Thefe two Differences may have feveral Degrees, which depend upon placing the Lips over a greater or lefs Chord of the Hole of the Flute, by turning it more inwards or cutwards.

Therefore when there is Occalion to fwell a Note. firt you turn the Flute inwards, that the Lips coming over the Edge of the Hole may fuffer but a fmall Quantity of Wind to go in or out, which then is driven weakly to produce a weak Sound; then infenfibly turning the Flute outwards, the Lips allow of a greater Paffage and Return to the Wind, which at that Time is driven with greater Force, that it may be communicated to a greater Quantity of Air, and there y increafe the Sound; or diminifh it anew, by infenfibly turning the Flute inwards, as in the firft Operation.

All thefe Variations of the Mouth may be perform'd in any one Sound whatfoever, whether it be an high or a low one; becaufe the Wind, tho' driven with different Degrees of Velocity during the Note that you wou'd fwell to foften, muft always be fo regulated as to produce the Vibrations which determi ne that Note: In the Beginning, when the Sound will be weak, becaufe it will frike a lefs Quantity of external Air, yet it will haveVibrations equal to thofe that are produc'd in the Middle of theNote where the Sound encreafes inForce, becaufe it will be communicated to a greater Quantity of Air ; the Vibrations not being ftronger or weaker on Account of their Velocity, but on Account of the Quantity of the Parts that they act upon, and which they put in Motion.
Wou'd you produce a foft Sound to reprefent an Echo? Place the Lips over the Hole quite to its Edge, by turning the Flute much inwards: then the Sound being able to be communicated but to a fmall Quantity of external Air, thro' fo finall an Hole, makes us hear a Sound that feems to be afar off, by its Atriking our Organs weak'y.

Thefe are Conveniences which cannot be found in Inftruments whofe Mouth is determined and invariable.

$$
(10)
$$

What remains to explain is that ftroke of the Tongue, which is abfolutely neceffary for playing on all Wind-Inftruments.

The tonguing an Inftrument is nothing elfe than a nort Interruption of the Wind, by the Interpofition of the End of the Tongue in the Paffage of the Lips.

Thefe, GENTLEMEN, have been my Thoughts upon the Sound of Wind-Inftruments, and the Manner of modifying it. Upon thefe Phyfical Caufes I have endeavour'd to found my Enquiries; by imitating the fame Mechanifin in an Alutomaton, which I endeavour'd to enable to produce the fame Effect in making it pl.y on the German Flute. The Parts which compound it, their Situation, their Connection, and their Effects, will be the Subject of the fecond Part of this Memoirc, as I firft propofed.

SECOND PART.

The Figure is about fix Foot and an half high, fiting upon a Piece of a Rock, placed on a fquare Pedeftal, four Foot and an half high, and three Foot and an half wide.

In the forepart of the Pedeftal (the Pannel being open'd) on the right Hand there is a Movement, which by Means of feveral Wheels mov'd by a Weight, carries round underneath a fteel Axel or Arbor, two Foot and a half long, with fix Cranks in its Length at equal Diftances, but looking different Ways. To each Crank are faften'd Strings which terminate at the End of the upper Boards of fix Pair of Bellows, two Foot and an half long, and fix Inches wide each, placed at the Bottom of the Pedeftal, where their lower Boards are made faft, fo that as the Arbor turns, the fix Pair of Bellows rife and fall fucceffively one after another.

(II)

In the hind Part of the Pedeftal, above each Bellows, there is a double Pulley, whore Diameters are unequal, namely, one of three Inches and the other of an Inch and an half; which is done to give the Bellows a greater Rife, becaufe the Strings joyn'd to them go round the great Diamcter of the Pulley, and thofe that are faften'd to the Arbor which draws them, wind round the fmall Diameter.

On the great Diameter of three of thefe Pullies on the right Hand, there are alfo wound three Strings, which, by Means of feveral little Pullies, terminate at the upper Boards of three Pair of Bellows placed in the upper Part of the Pedeftal, before and at the Top.

Each String, as it ftretches, when it begins to draw the Board of the Bellows, to which it is fix'd, moves a Lever placed above, between the Axis and the double Pullies in the middle Part of the loweft Space of the Pedeftal. That Lever, by Means of different leading Pieces terminates at the Valve of the lower Board of each Bellows, and keeps it raifed, that the Air may go thro' without any Refiftance, whilf the upper Board, as it rifes, encreafes the Cavity of the Bellows. By that Means, befides gaining Force, we avoid the Noife which that Valve commonly makes, as the Air caufes it to tremble when it comes into the Bellows. Thus the nine Bellows are moved without any Shake, or Noifes and with but a fmall Force.

Thefe nine Bellows communicate their Wind, in three different and feparate Pipes. Each Pipe receives that of three Pair of Bellows: The three which are in the lower Part of the Pedeftal on the right Hand forwards communicate their Wind to a Pipe which runs up along the upright Piece of the Pedeftal on the fane Side, and there three Bellows are loaded with a Weight of four Pounds each: The three which are on the left Hand in the fame

Row, give their Wind thro' a Pipe like the former, which rifes along the upright Piece on the fame Side; and thofe below ate only loaded with two Pounds each: The three Pair of Bellows, which are in the upper Part of the Pedeftal, give theirWind thro' a Pipe which runs horizontally under them, and are loaded only with the Weight of their upper Boards.

Thefe three Pipes, by different Elbows, end in three fmall Receptacles in the Breaft of the Figure. There they re-unite into one, which goes up thro' the Throat, or Wind-Pipe, and widening makes a Cavity in the Mouth terminated by two Lips which bear upon the Hole of the Flute: There Lips give theWind a greater or lefs Iffue, as they are more or lefs open; for the Performance of which, as well as that of coming forward or being drawn back, there is a particular Piece of Mechanifm.

Within the formentioned Cavity there is a little moveable Tongue, which by its play can open or fhut the Paffage of the Wind that goes thro' the Lips of the Figure.

By this Mechanifm has the Wind been conducted to the Flute; and by the followingContrivances it hasbeen modified.

In the anterior Face of the Pedeftal on the Left, there is another Movement, which by is Wheel-work, turns a Cylinder two Foot and an half long, and fixty four Inches in Circumference: This Cylinder or Barrel is divided into fifteen equal Parts, of an Inch and an half each.

In the pofterior Face of the Pedeftal in the upper Part of it, there is a Key-Frame, drawingor bearing on the Barrel, made of fifteen very moveable Levers, whofe Ends on the Infide have a little Nib or lifting Piece of Steel, which anfwers to each Divifion of the Barrel.
At the other of thefe Levers are faften'd Wires and Chains of Steel, which lead to the different Receptacles of Wind, to the Fingers, to the Lips, and to the Tongue of the Figure. Thofe
(13)

Thofe which anfwer to the different Receptaxles of Wind, are three in Number, and their Chains rife perpendicularly behind the Back of the Figure, quite up to the Breaft, where they end, being each fix'd to the Valve of one of the Receptacles: And this Valve being open, fuffers the Wind to pafs into the Pipe of Communication, which riles, as I have already faid, thro' the Wind-pipe into the Mouth.

The Levers which anfwer to the Fingers, are feven in Number, and their Chains alfo rife perpendicularly quite up to the Shoulders; and there they make an Angie or Bend, to go thro' the upper Part of the Arm to the Elbow, where they bend again to run along the Arm as far as the Wrif, where each of them ends in a Joynt fix'd to a Tenon made by the End of the Lever. contain'd in the Hand, imitating the Bone which the Anatomifts call Metacarpos, which, in the fame Manner, makes a Joynt with the Eone of the firft Pbalanx: So that the Chain being drawn, the Finger may rife.

Four of thefe Chains are inferted in the right Arm to move the four Fingers of that Hand; and three in the left Arm for three Fingers, there being only three Holes which anfwer to that Hand.

The end of each Finger is arm'd with a Skin or Leather, to imitate the Softnefs of the natural Finger, that the Holes may be exactly ftopt.

The Levers of the Key-Frame, which anfwer to the Motion of the Mouth, are four in Number: The Steel Wires which are faften'd to them make Leaders to go to the Middle of a Ratchet within; and there are faften'd to Chains, which rife perpendicularly parallel to the Back-Bone in the Body of the Figure, whence paffing thro' the Neck, they come into the Mouth, where they are faften'd to thofe Pieces, which being fix'd
fix'd to the Lips within, give them four different Motions: The one opens then to give theWind a greater Iflue; the next contracts the Paflage in bringing them nearer together; the third draws them back; and the fourth makes them advance over the Edge of the Hole.

There is but one Lever more upon the Koy-Frame, to which is likewife faften'd a Chain which rifes like the reft, and ends in the Tongue, which is in the Cavity of the Mouth, behind the Lips, to ftop the Hole, cccafionally, as I faid before.

Thefe fiftecn Levers anfwer to the fifteen Divifions of the Barrel, by their Ends which have the Steel Elbows or lifting Pieces, at an Inch and an half Diftance from each other: When the Barrel turns, the Bars of Brafs fix'd upon its divided Lines meet with the lifting Pieces, and keep them raifed a longer or a chorter Time, according as thofe Bars are longer or horter: And as the Ends of all thofe lifting Pieces, make one right Line, parallel to the Axis of the Barrel, cutting all the Lines of Divifion at right Angles; every Time that a Bar is fix'd at each Line, and that all the Ends of thofe Bars make amongtt them alfo a right Line, and parallel to that which is form'd by the lifting Pieces of the Levers, each End of a Bar (as the Barrel turns) will touch and raife at the fame Time the End of a Lever; and the other Ends of the Bars likewife forming a sight Line parallel to the firft, will, by the Equality of the Length of the Bars, each let falt its Leiser at the fame Time. Cne may eafily fee by this, how all the Levers may act, and at the fame Time concur to the fame Operation, if it be neceffary.

When there is only Occafion for fome of the Levers to act, you place Bars only at thofe Divifions which anfwer to thofe Levers which you wou'd have to move:

(15)

You may even determine the Time, by placing them nearer to or faither from the Line form'd by the lifting Pieces; and their Action may end fooner or later, according to the different Length of the Bars.

The End of the Axis of the Barrel on the right Hand is terminated by an endlefs Screw with fingle Threads, diftant from one another a * Line and an half, containing twelve Threads, which make an Inch and an half in Length, equal to the Divifions of the Barrel.

Above this Screw a Piece of Brafs is fix'd to the Pedeftal Frame, which holds a Pivot of Sieel of about one Line Diameter, that falls in between the Threads of the Screw, and ferves inftead of a Nut to it; fo that the Barrel in turning is obliged to follow the fame Direction as the Threads of the Screw, being guided by the Steel Pivot which is fix'd: Thus as the Barrel turns round, each Point of it will defribe a Spiral Line, and confequently make a progreffive Motionfrom Left to Right.

By this Means each Divifion of the Barrel, determined at firft under each End of a Lever, will change its Point at every Revolution, becaufe it will recede from it a Line and an half, which is the fame Diffance as the Threads of the Screw.

Therefore the End of the Levers faften'd to the KeyFrame remaining unmoveable, and thofe Points of the Barrel, to which they anfwered at firf, moving away each Mornent from the Perpendicular, by forming a fpiral Line, (which by the progreflive Motion of the Barrel, is always directed to the fame Point, that is to the End of each Lever) i: follows that the End of each Lever meets every Mcment new Points upon the Barrs of the Barrel; which are never repeated, becaufe they form Spirals between them, which make twelve Turns upon the

[^4]
(16)

the Barrel, before the firft Point of the Divifion can come under another Lever than that under which it was firf determin'd.

It is in this Space of an Inch and an half that all the ${ }_{c}$ Bars are placed, which Bars themfelvesalfo form fpiral Lines, that the Lever (under which each of them muft pals during the twelve Turns of the Barrel) may act.

As one Line changes in Refpect of its Lever, all the other Lines change in Refpect of theirs; thus each Lever has twelve Lines of Bars of fixty four Inches in Length, which all go under it, and which all together make a Line of feven Hundred and fixty-eight Inches long. Upon this Line are fix'd all the Bars fufficient for the Action of the Lever during the whole Play.

What remains is to hlew, how thefe different Motions have contributed to produce the Effect which I propofed in this A utomaton, comparing them with thofe of a livingFerfon.

To make it produce Sound from the Flute, and form the firft Note, which is D below. I begin firft to difpofe the Mouth; for which End I fix upon the Barrel a Bar under the Lever, which anfwers to thofe Parts of theMouth that ferve to increafe the Opening of the Lips. Secondly, If fix a Bar under that Lever which ferves to draw back thofe Lips. Thirdly, I fix a Bar under that Lever which opens the Valve of that Receptacle of Wind, which is fupplicd by the fmall Bellows that are not loaded. Laftly, I fix a Bar under the Lever which moves the Tongue, to give a Stroke with the Tonque; fo that thefe Bars in the fame Time touching the four Levers, which ferve to produce the forefaid Operations, the Flute will found D below.

By the Action of the Lever, which increafes the Opening of the Lips, the Action of a living Man is imitated, who increafes that Opening for the low Sounds.

By the Lever which draws back the Lips, I imitate the Action of a Man who removes them farther from the Hole of the Flute, by turning it outwards.

By the Lever which gives. Wind from the unloaded Bellows, I initate the weak Wind which a Man gives, when he drives it out of the Receptacle of his Lungs, by only a light Compreffion by the Mufcles of his Breaft.

By the Lever which moves the Tongue, in unftopping the Hole thro' which the Lips let the Wind pafs, 1 imitate the Motion of a Man's Tongue, when he pulls it back from the Hole to give Paffage to the Wind to articulate fuch a Note.

It will then follow, from thofe four different Operations, that by giving a weak Wind, and making it pafs thro' a large Iffue in the whole Bignefs of the Hole of the Flute, its Return will produce flow Vibrations, which mult be continu'd in all the Parts of the Body of the Flute, becaufe all the Holes will be fhut, and, according to the Prinple fettled in my firft Part, the Flute will give a low Sound: and this is confirm'd by Experience.

If I wou'd make the Flute found the Note above, namely E, to the four firft Operations for D, I add a fifth; I fix a Bar under the Lever, which raifes the third Finger of the Right Hand to unftop the fixth Hole of the Flute; and I make the Lips to come a little nearer to the Hole of the Flute, by fxing or making a little lower the Bar of the Barrel which held up the Lever for the firft Note, namcly for D. Thus, giving an Iffue to the Vibrations fooner, by unfopping the firft Hole from the End, as I faid above, the Flute muft found a Note above; which is alfo confirm'd by Experience.

All thefe Operations will be continued pretty nearly the fame in the Notes of the firft Octave, where the fame Wind is fufficient for forming them all. It is the diffe-

(18)

rent Opening of the Holes, by raifing the Fingers, which characterifes them: All that is requir'd is to fix on the Barrel Bars under the Levers which muft raife tlie Fingers to form fuch a Note.

In order to have the Notes of the fecond Octave, we mult change the Situation of the Mouth, that is, we mult place a Bar under that Lever which ferves to pufh the Lips beyond the Diameter of the Hole of the Flute, and thereby imitate the Action of a living Man, who in that Cafe turns the Flute a little inwards.

Secondly, we muft fix a Bar under that Lever, which bringing the Lips towards one another diminifhes their O pening; as a Man does to give a lefs Iffue to the Wind.

Thirdly, a Bar muft be fix'd under the Lever which opens the Valve of that Receptacle that contains the Wind coming from thofe Bellows which are loaded with two Pounds; becaufe the Wind being then driven with more Force, acts in the fame Manner as that with which a living Man blows by a ftronger Action of the Pectoral Mufcles. Befides, Bars muft be plac'd fo as to run under the Levers neceffary to raife the Fingers requir'd.

From all thefe Operations it will follow, that a Wind driven with more Force, and going thro' a fmaller Paffage, will double its Swiftnefs, and confequently produce double the Number of Vibrations; and thefe make the Octave.

As you rife up to the higher Notes of this fecond Octave, the Lips mult ftill be brought clofer, that the Wind in the fame Time may encreafe its Velocity.

In the Notes of the third Octave, the fame Levers that go to the Mouth act as in thore of the fecond, with this Difference, that the Bars are a little higher: Which makes the Lips advance quite over the Edge of the Hole of the Flute, fo as to leave but a very fmall Hole. You muft only add a Bar under that Lever which

(r 9)

which opens the Valve of the Receptacle which has its Wind from the moft loaded Bellows, that is thofe that are prefs'd down with four Pounds. Confequently the Wind, blown with a ftronger Compreffion, and going thro' aPaflage fill fmaller, will increafe its Velocity in a triple Ratio; whereby you will have the triple OYtave.

In all there different Octaves fome Notes are harder to produce than others; and then they muft be managed by bringing the Lips over a greater or a lefs Chord of the Hole of the Flute, and by giving a flronger or a weaker Wind, which is the fame that a Man does to found the fame Notes, bcing oblig'd to manage his Wind, and to turn the Flute inwards or outwards, more or lefs.

It is eafy to conceive that all the Bars fix'd upon the Barrel muft be longer or fhorter, according to the Time that each Note muft have, ard according to the different Situation neceffary for the Fingers: which I hall not particularize here, leaft I hould exceed the Limits of a fhort Memoire, fuch as I propofed to give.
I wou'd only have it obferved, that in fwelling of Notes, I have been oblig'd, during the fame Note, infenfibly to fubflitute a flrong Wind to a weak, and a weaker to a ftronger, and at the fame Time to vary the Motion of the Lips; that is, to put them into the proper Situation for each Wind.

For a foft Sound, that is to imitate an Echo, I have been oblig'd to advance the Lips over the Hole of the Flute, and fend a Wind fufficient for forming fuch a Tone; but whofe Return, by fuch a fmall Iffue as its Entrance into the Flute, can only ftrike a fmall Quantity of external Air ; which, as I have faid, produces an Echo.

The Quicknels and Slownefs of different Airs have been meafur'd upon the Bar rel, by Means of a Lever; one End of which being arm'd with a Steel Point ferv'd to mark the Barrel, as the Lever was fruck upon. At the C_{2}

(20)

other End of the Lever was a Spring, which immediately raifed the Point up again.

The Movement was fet a going, which turn'd the Barrel with a Velccity proportionable for the feveral Tunes.

At the fame Time a Perfon play'd on the Flute the Tune whofe Time was to be meafured; whilft another Perfon beat Time upon the End of the Lever, whofe Point mark'd the Barrel, and the Diftances between the Points prick'd on were the true Meafure for the Tunes to be mark'd. Then the Intervals were fub-divided into as many Parts as the Meafure had Times or Bars.
The Fear of tiring you, Gentlemen, has made me pafs over a great many little Circumftances, which tho' eafy to fuppofe are not fo foon executed: theNeceffity of which appears by a View of the Machine, as I found it in the Practice.

GENTLEMEN, after having drawn from your Me moires the Principles which have guided me, it wou'd be no finall Satisfaction to me, if I could flatter myfelf to fee you acknowledge, that I have happily applied thofe Principles in the Execution of my Work. In the Approbation that you will deign to give it, I hall find the moft glorious Reward of my Labour, and Thall have greater Encouragement to purfue Hopes yet more flattering, which make my utmoft Ambition.

An ABSTRACT of the Regifter of the Royst-Academy of Scifeces.

> April 30, 1738. N. S.

THE Academy baving beard Mr. Vaucanson's Memore read, containing the Defcription of a wooden Statue, copied from the Marble Faune of Coyfevaux, that plays on the German-Flute; on which it performs twelve different Tunes, with an Exaßtnefs which has deferv'd the Admiration of the Publick, and of which great Part of the Academy has been Witnefs; they have judg'd this Machine to be cxtremely ingenious, and that the Author of it has found the Means of emplojing new and fimple Contrivances, as well for giving the Fingers of that Figure the necoffary Motions, as for modifying the Wind which gocs into the Flute by encreafing or diminifhing its

(21)

Volocity, according to the different Notes; by varying the Pofition of the Lips, and moving a Valve which performs the Office of the Tongue; and laftly, by imitating by Art all that is neceffary for a Man to perform in fuch - Cafe. Befides, Mr. Vaucanson's Memoire is written with all the PerSpicuity and Exactnefs tbat the Sulject is capable of; wbich Sows the Author's Skill and great Knowledge in the different Paris of Mechanicks. In Witnefs whereof I bave fign'd the prefent Certificate. Paris, May 3, 1738. N. S. FON TENELLE, Perpetual Secretary of the Royal-Academy of Sciences.

The Approbation of the Royal Cenfor.

Have, by Order of my Lord Chancellor, read a Manufrript entitld, The Mechanifm of an Automaton playing on the Flute, prefented to the Gentemen of the Royal-Academy of Sciences, by Mr. Vaucanson, Author of this Machine. Mr. Vaucanson explains in bis Memoire thofe phyjical Prisciples that he has emplayed for the Invention aisd Execution of bis Automaton, which is one of the moft woonderful Productions of Art: It imitates a true Player on the Flute fo perfectly, that the Publick continues to fee and hear it with Almiration. Therefore we believe that the Imprefion of Mr. Vaucanson's Memoire will be very ufeful to fatisfy fully the Curiofity of the Publick. Paris, Junc 12, 1738.
H. PITOT

Mr. Vaucanson's Letter to the Abbe De Fontaine.
M^{Y} fecond Macbine, or Automaton, is a Duck, in whicb I reprefent the Mechanifm of the Intefines zubich are employed in the Operations of Eating, Drinking, and Digeffion: Wherein the Working of all the Parts neceffary for thofe Acsions is exactly imitated. The Duck Aretcbes out its Neck to take Corn out of your Hand; it fwallowes it, digeffs it, and difcbarges it digeffed by the ufual Paflage. You fee all the Alioions of a Duck that fwallows greedily, and doubles the Swiftnefs in the Motion of its Neck and Throat or Gullet to drive the Food into its Stomach, copied from Nature: The Food is digefted as in real Animals, by Difolution, not Trituration, as fome natural Pbillofophers zeill bave it. But this I Jall treat of, and Bew, apon anotber Occafion.

The Matter digefed in the Stomach is conducted by Pipes, (as
in an Animal by the Guts) quite to the Anus, where there is a Spbiniter that lets it out.

I don't pretend to give this as a perfeel Digetion, capable of producing Blood and nutritive Particles for the Support of the Asimal. I bope no body will be fo unkind as to upbraid me with preterding to any fuch Thing. I only pretend to imitate the Mecbanifm of that AEtion in tbree Things, viz. Firft, to fwallow the Corn; fecondly, to macerate or difolve it; thirdly, to make it come out fenfibly changed from what it was.
Nevierthelefs, it was no eafy Matter to find Means for thofe three Altions, and thofe Means may perbaps deferve fome Attention from tbofe that may expect more. They will fee what Contrivances bave been made ufe of to make tbis artifcial Duck take up the Corn, and fuck it up quite to its Stomach; and there in a little Space to make a Cbymical Elaboratory to decompound or feparate the Integrant Parts of the Food, and then drive it away at Pleafure tbro' Circumvolutions of Pipes, wobich dijcharge it at the o:ber End of the Body of the Duck.

I don't believe the Anatomifts can find any thing wanting in the Conftrution of its Wings. Not only every Bone bas been imitated, but all the Apophyses or Eminences of each Bone. They are regularly obervid as well as the different foints: The bending the Cavities, and the three Bones of the Wing are very difinat. The firt, which is the Humerus, bas its Motion of Rotation evcry Way with abe Bone that performs the Office of the Omoplat, Scapula, or Shoulder-Blade: The fecond Bone, zwbicb is the Cubitus of the Wing, bas its Motion with the Humerus by a Juimt which the Anatomifts call Ginglymus; the third, which is the Radius, turns in a Cavity of the Humerus, and is fafen'd by its otber Ends to the little End of the Wing, jut as in the Animal. The Infpection of the Machine will better foeru that Nature bas been juflty imitated, 1ban a longer Detail, which wou'd oni'y be an anatomical Defcription of a LVing. To fiew that the Contrivances for moving thefs Wings are noth:ng like what is made ufe of in thofe wonderful Pieces of Ait of the Cock mov'd by the Clock at Lyons, and that at Strafburgh, the whole Mecbaniifm of our artificial Duck is expofed to View ; my D:fgn being ratber to demonflrate the Manner of the Aizions, than to hew a Machine. Perbaps fome Ladies, or fome People, who only like tbe Outfide of Animals, bad ratber bave
bave flea the qubole cover'd; that is, the Duck with Feathers. Bat bofides, that 1 bave been defin'd to make every Thing vifible; I wou'd not be thought to impofe upon the Spectators by any conceal'd or jugating Contrivanse.
I belicve ihas Perfons of Skill and Altention, will fee bow difficult it has been to make fo many different moving P arts in this finall Automaton; as for Example, to make it rife upon its Legs, and thrazo its Neck to toz Right and Left. They will find the dif. ferent Changes of the Fulchrum's or Certers of Motion: they quill alfo Jee tbat what fometimes is a Center of Motion for a moveable Part, another Time becomes maveable on that Part, wobich Part tben becomes fix'd. In a Ward, they will be fenfible of a prodigious Number of Mechanical Combinations.

This Macbine, wiben once wound up, performs all its different Operations witbout being touch'd any more.

I forgot to tell you, that the Duck drinks, flays in the Water with bis Bill, and makes a gugling Noife like a real living Duck. In ฏort, I bave endeavour'd to make is imitate all the ABlions of the livins Animal, which I bave confider'l very attentively.

My third Macbine, or Automaton, is the Figure playing on the Tabor and Pipe, which fands upright on its Pedefal, drefs'd like a dancing Shepberd. This plays twenty $T_{\text {unes, }}$ Minuets, Rigadouns, and Country-dances.

One wou'd at firft imagine that the Difficulty in making of this bas been lefs than in the Figure playing on the German-Flute. But, without making a Comparifon between the two Machines, to praife one more than the otber; I would bave it obferv'd, that bere an Inftrument is play'd upon, wbich is very crofs-grain'd and falfe in itfelf; that I bave been forc'd to articulate Sound by Means of a Pipe of three Holes only, where all the Tones must be perform'd by a greater or lefs Force of the Wind, and balf foopping of Holes to pinch the Notes: Tivat I bave bee:i oblig'd to give the different Winds, zeith a Swifine/s which the Ear car bardly follow; and that every Nate, even Semi-Quavers, muft be tongued, witbout qubich the Sound of tbis Inftrument is not at all arreeable. In tbis the Figure out-does all our Performers on the Tabor-Pipe, who cannot move tbeir Tongue faft enough to go thro' a whole Bar of SemiQuavers, and ftrike them all. On the contrary, they fur above baif of tbem; but my Piper plays a whole Tune, and tongues every Note. What a Combination of Winds bave I been oblig'd to make

(24)

for that Purpofe? In carrying on my Work, I bave made Difcoveries of Things which could never bave been fo much as guefi'd at. Cou'd it bave been thought, that this little Pipe fiou'd, of all the Wind-Inftruments, be one of the moff fatiguing to tbe Lungs? For in the playing upon it, the Performer mult often firain the Mufcles of bis Breaft with a Force equivalent to a Weight of 56 Pounds: For I am oblig'd to we that Force of Wind, that is, a Wind driven by that Force or Weigbt, to found the upper B , which is the bigbeft Tone to qubich this Infrumpent reaches: Whereas one Ounce only is fufficient $t 0$ found tbe fivft Note, or produce the lowief Tone, whicb is an E . Hence will appear, bow many different Blafts of Wind I muft bave bad to rum thro' the wubole Compafs of the Tabor-Pipe.
Moreover, as the different Pofitions of the Fingers are jo few, fome wou'd be apt to tbink that no more different Winds wou'd be neceffary than the Number of Notes on the Infrument; but the Fait is otbervife: that Wind, for Example, which is able to produce a D following a C , will never produce it, if the fane D is to be founded next to the E juft abcve it; and the fame is to be underfood of all the otber Notes. So that upon Computation it will appear that I muft bave truice as many different Winds, as there are Tones, befides the Semi-Tones, for each of wbicb a particular Wind is abfolute'y necoffary. I cown frecly, that I am furpriz'd myfelf to fee and heat my Automaton phy and perform fo many and fo differently varied Combinations: And I bave beeia more than once ready to defpair of fucceediag; but Courage and Patience overcame cvery Thing.

Yet this is not all: This Pipe emplyys but one Hand; the rigure bolds a Stick in the otber, woitb wobich be frikes on the Tabor finsle and double Strokes, Rollings varied for all the Tunnes, and keeping Time with what is play'd with the Pipe in the other Hand. This Motion is none of the casfeff in the Macbine; for fometimes we muf frike barder, fometimes quicker, and the Strike muft alway's be cleain and fmart, to nake the Tabor found ripbt. qhe Mecbinifno for this confifis in an infinite Combination of Leciers, and different Sjrings, all moved with Exactuefs to keep true to the Tune: But thefe woin'd le too tedious to give a particular Account of. In a Word, this Figure in ins Contrivance is fometbing like that which plays on the German-Flute; but differs from it in many of the Means of its operaions.
F I N I S.

The Transiator to the Reader.

THOS E nabo bave neither feen, nor biart a true Account of M. Vaueanson's Macbines, may wiondot that I Bould take any Pains to promote the Adivantage of Perfons who are expojing any thing to publick View: As it would be very mean to cry up triffing Performances, and commend what amufes the great and finall Vulyar, by Con-. federacy, fich as the pretended Mathematical Figures, Oic. But on the otber band F_{2} it is laudable to encourege thofe wobo are truly ingenious, by doing "fuftice to the mof curious Peices of Art tbat perbaps bave ever been perform'd; wobich I cannot do better than by tranflating into Englifh this Memoire of Mr. Vaucanson, that in a ferw Words gives a better and more intelligible Theory of Wind-Mufick than can be met with in large Volumes. And bere the Readerwill allo find a clear Explication of every Part of bis Contrivances, wbish requires no fmall Skill to do with fuch Perficuity, without Figures.

In giving this Paper an Englifh Drefs. I am fill acting in my Province, which bas been for many Years to explain the Works of Art, as well as the Phænomena of Nature.

J. T. Defaguliers.

P. S. Wbilft this Memoire was printing, 1 received the Defcription of the Duck and that of the Figure playing on the Tabor andPipe; which Mr, Vaucanson defcribes in a Ietter to a Friend. Therefore to do bim Gufice in every Refpect, and for the Satisfaction of the Curious, I have fubjoines the Irangation of his Letter.

Statues

There are many accounts of statues and heads in the past which could speak. Some, such as the statue of Memnon in Egypt, were musical in their utterings. Others like the statue of Orpheus at Lesbos not only spoke but accurately predicted events in history.

In the same way that the fantasy of the automaton dancer captured the imagination of many an operatic librettist, so, even if to a lesser extent, did the speaking statue. One appears, for example, in Mozart's 'Don Giovanni'.

Was the speaking statue fact, fantasy or deceit? The following article appeared in a book entitled "Curiosities for the Ingenious Selected from the most authentic Treasures of Nature, Science and Art." and published in 1822.

How to make a Statue speak.
Place a concave mirror of ten, or gilt pasteboard of about two fect diameter, as A B (Ylate XI.) in a perpendicular direction. The focus of this mirror may be at Afteen or eighteen inches distance from its circumference. At the distance of about five or six feet, let there be a partition, in which there is an opening (EF) equal to the size of the mirror ; against this opening, place a picture printed in water colours on a thin cloth, that sound may easily pass through it. Brelind the partition, at the distance of two or three feet, place another mirror (GH) of the same size as the former, and let it be diametrically opposite to it.

At the point C let there be placed the figure of a man seated on a pedestal, and let his ear be sitnated exactly in the focus of the first mirror; his lower jaw must be made to open by a wire, and shut by a spring; and there may be aaother wire to move the cyes; these wires must pass through the figure, go under the floor, and come up behind the partition.

Let a person properly instructed be placed behind the partition, near the mirror. You then propose to any one to speak softly to the statue, by putting his month to the ear of it, assuring him that it will answer instantly. You then give the preconcerted signal to the person behind the partition, who, by placing his ear to the focus I of the mirror, G H will, by the reflection of the sound, hear distinctly what the other said; and moving the jaws and eyes of the statue by the wires, will return an answer directly; which will, in like manner, be distinctly heard by the first speaker.

The more effectually to conceal the cause of this illasion, the mirror AB may be fixed in the wainscot, and a gauze or any other thin covering thrown over it, as that will nut in the least prevent the sound from being reflected.

An experiment of this kind may be performed in a fielả or garden, between two hedges, in one of which the mirror A B may be placed, and in the other an opening artfully contrived.
This experiment appears to have been derived from the Century of Inventions, by the Marquis of Worcester; whose designs, at the time they were published, were treated with ridicule and neglect, as being impracticable, but are now known to be generally, if not universally', practicable. The words of the Marquis are these: "How to make a brazen or atone heard in the midst of a green field or garden, so artificial and matural, that though a man apeak ever so softly, and even whisper into the ear thereof, it will pregently open its mouth and resolve the question in French, Latin, Welsh, Irish, or English, in good terms; uttering it out of its month, and then shutting it, until the next question be asked."

This tune sheet comes from a cylinder box made by Jean Billon-Hiller and bears the Billon-Hiller butterfly trade mark. The words "SWISS MADE" are stamped on the cock. Unlike most of the latter boxes by this maker which had interchangeable cylinders and featured a separate locking stopwork on the spring barrel to hold the power whilst cylinder changing, this box is a perfectly straightforward single-cylinder movement.

By courtesy of Graham Webb.

One of the larger of the Amorette models - the 24 note playing a $12^{\prime \prime}$ metal disc.

An unusually deep cabinet houses this $81 / 4^{\prime \prime}$ twin comb 60 tooth Symphonion.

Paper bands, some of enormons length, are played by this Royal "orguinette".

This Melodia organette plays a paper roll $8^{\prime \prime}$ wide and has 14 notes.

The large Mignon has 22 notes and a swell flap each side of the case.

Monopol model no. 184,84 teeth and zither attachment on both combs.
$171 / 4^{\text {" }}$ Stella in ornate bureau type cabinet. (Former property of The Editor who rescued it from a chicken house in Sussex)

These pictures are of Founder Member Frank Greenacres' collection at 164 Lowestoft Road, Gorleston-on-Sea. Great Yarmouth.

This particularly attractive barrel organ belongs to Member Ralph Heintz of Los Altos, California. It was made by John Langshaw who was born in 1718 and died in 1798 (vide Langwill \& Boston). Langshaw worked with Snetzler in the construction of the first mechanical organ for the Earl of Bute under the direction of John Christopher Smith, Handel's amanuensis. The organ has survived with its complement of three barrels, each playing tunes.

The first barrel plays (1) Dorchester 135th Psalm; (2) Evening Hymn, (3) Psalm 15th; (4) Bedford 23rd or 146 Psalm; (5) The 100th Psalm;(6) Cornish 76th Psalm; (7) Hanover 104 Psalm; (8) Bristol 108 Psalm; (9) St. David's; (10)Dr. Heighington's 18th Psalm.

The second barrel is devoted to secular music with dances, whilst the third has the usual batch of traditional tunes and popular airs including God Save the King, Clarinet March, Duke of Brunswick's March and Fisher's Minuet.

The organ has 4 stops and 60 pipes. Apparently in keeping with the majority of early chamber barrel organs, the stop knobs were simply extensions to the sliders and were thus situated on the left hand side of the organ case. This makes arti.tic playing rather difficult. It is interesting to note that barrel organs made by William Hubert Van Kamp have very sim-ilar-shaped upper and lower limits to the dummy pipe front.

Another item from Member Ralph Heintz' collection is this unusual singing bird box. In front of the bird is a small cylinder which is indexed to a different radial position each time the start button is actuated, so bringing a different stanza of a poem into view. The whole poem reads:

It can be said with flowers,
With bows and smiles in showers, But I can't speak a single word, 'Cause I am only a little bird,
Sol'll say it with a song,
"I think a lot of you" ... So long.

ABOUT BARREL ORGANS

by PERCY A. SCHOLES

The well-enomn Music Critic and Author

ANY writer on music in whom, as in me, the fine, solid quality of conscientious thoroughness is happily blended with the gentier and even more attractive one of perfect modesty, must sometimes feel a little disconcerted on realising how the productive fields of his painfully acquired knowledge are bordered by a desert that still awaits the labour of his spade. For thirty years have I benevolently contributed to the instruction of the musical public, yet what do I know of the Barrel Organ?
This humiliating thought swept over me lately like a black cloud over a sunny day. I decided to take stock of my knowledge on the subject and found it tiny. There were at one time hundreds of these admirable instruments aiding the devotions of English Christendom, yet almost all my information can be recorded in the course of one brief article. Here is what I know :

Barrel Organs "came in" during the 18th century and continued to "come in" half way through the 19th -gradually displacing the bands of fiddles, flutes, clarinets and bassoons that until their advent occupied the west galleries of village churches, which bands apparently survived in many places until, with the invention of the cheap and handy harmonium, the last of them retired discouraged. (I should suppose that the musical descriptions in Thomas Hardy's Under the Greenvood Tree refer to a district socially in arrear. By the author's mention of "Queen's

Scholars" the period cannot be earlier than 1870, and yet he shows us village bands maintaining their losing fight simultaneously against " harmonions and barrel-organs," both of them, as the village orchestralists rather too indiscriminatingly assert, " miserable dumbledores." Yet barrel organs had appeared in churches in most districts long, long before this, and had, indeed, by then mostly disappeared again. Laggard Mellstock!)

It looks to me probable that the Barrel Organ was fairly well known as a domestic luxury even before it took its place as almost an ecclesiastical necessity. Readers of Tbe Rotunda happily still keep before the public two fine Fantasias composed by Mozart for a privately owned instrument on the barrel-organ principle, nearly a century and a half since (1790-1), but what about the music Handel wrote for one half a century earlier? Here my ignorance abashes me. I do not know this music. Handel's name has, I admit, come my way sometimes in various connections, but should I ever have met with the once-famous name of "Langshaw" but for the circumstance of its owner's association with Handel in the magnificent enterprise of providing barrel organ entertainment for an earl ? For this, apparently, is John Langshaw's claim to a niche in our national Valhalla. The Earl was, as I gather, that famous one of Bute, who so long exercised a not altogether happy influence over George III and the foreign policy of
our country. He was as intimate with George in his chrysalis or Prince-ofWales state as in his more glorious later development, and may well have shared that great music-lover's admiration for Handel. The diligent but oft-erring Fêtis, in his Biographie Universelle des Musiciens, turns "Bute" into "Bath." Here is Fêtis translated:
"Langshaw, Organist and mechanician of great merit, born in England about 1718 . Became known by some mechanical cylinders that he adapted to a superb organ belonging to the Earl of Bath. This lord having asked Handel for some pieces for the instrument the great musician wrote them and charged Langshaw with the duty of transferring them to enormous cylinders which revolved according to varying systems of motion, and of which the combinations produced majestic effects. Langshaw was employed by the Earl for more than a dozen years in perfecting his instrument. In 177^{2} he obtained the position of organist at Lancaster. He occupied it for more than twenty-five years and died in that town in $1798 . "$
The Dictionary of National Biography and Grove refer to some part played in Handel's barrel-organ excursion by his amanuensis, John Christopher Smith; both assure us that "tbe barrels were set in so masterly a manner that the effect was equal to that of the most finished player," and that barrelling was (at a somewhat later date, at any rate) not incompatible with "finish" we must concede on the assertion of the great Dr. Burney who, after touring Europe and listening critically to the most "finished" performers of every sort, was able to declare of the barrel-organ that "the recent improvements of some English artists bave rendered the barrel capable of producing an effect equal to the fingers of the first-rate performers." (See his long article on the Organ in Rees' Cyclopadia or Universal Dictionary of Arts, Sciences and Literature.)

Here I pause to ask if any reader of The Rotunda is better instructed than

I as to the nature of an instrument that Burncy must have heard in his carlier days, the "Microcosm." Λ reader of The Gentleman's Magazine in 1796 became anxious about it. "I shall the mutci) obliged to you," he writes to the Editor, "to inform we whal became of the Mizrocos", carried about through most turts if Emope, and the English America, aboutt 40 years past, by a Mr. Bridges." To which he gets a reply in the next issue which, however informative, does not answer his question. "Mr. Henry Bridges was a carpenter of Waltbam Abbey, who, by nine years' study, performed and finished such a musical machine, or surprizing microcostm or musical clock,* whose performance to the most curious has given such general satisfaction, nay even beyond common fame or belief." He is also told that in Farmer's History of W'altham Abbey, 1735. " there is a print of the machine, and two ceper of verses addressed to the artist." The said Farmer's History I have not at hand, so I can say no more about the Microcosm; but from the fact that the History appeared in 173s it is clear that as early as two hundred years ago the mechanical production of music was a means of attaining widespread (if short-lasting) fame.

The most magnificent example of the mechanical organ ever constructed I take to be the Apollonicon, which had nothing " micro" about it and certainly could not have been carted about " most parts of Europe and the English America." Here again an earl seems to have been the instigator, and once again a Scottish one-the Earl of Kirkwall. The enthusiastic Burney, in Rees' Cyclopadia, gives no fewer than eleven columns to a description of the Earl's acquisition and assures us that -when "His royal bighness the prince regent lately dined with lord Kirkwall and a select party of nobility they were entertained by the performance of the celebrated opera of Mozart, the Zauberflute, by the barrel part of this instrument." (What he means by " the performance of the opera

[^5]I cannot say, especially as he goes on to say that this was "followed by the march in the same piece.") He declares that "the machine produces the various accompaniments of a whole band of music, in sucb dulcet as well as forcible tones, that no one would credit witbout an opportunity of bearing the instrument." The Apollon1con, like the old organ in the ecolian Hall in our own day, was capable of being played either by hand or without it, and Burney tells us that these alternative means were common-" Barrels are nov very generally added to chamber organs, operating on the same pipes as the fingerkeys."
Although I have for convenience called the Earl's instrument " Apollonicon," I am not sure that he actually knew it by this name, which rather seems to be one that its builders, Flight and Robson, introduced when they went one better than themselves. The Harmonicon in 1830 tells us that :
"Encouraged by the praise bestowed on this comparatively small instrument, the builders were induced to undertake, on their own account, the construction of one of much larger dimensions and increased powers; and, about the year 1812, issued prospectuses announcing the intended Apollonicon - the Prince Regent, with recent recollection of the pleasure he had received from hearing that built for Lord Kirkwall, giving them permission to use his name as patron of the undertaking." This larger instrument took nearly five years to construct and cost $£ 10,000$; it had 1,900 pipes and between 40 and so stops. It was publicly opened in ${ }^{2817}$ with barrel performance of overtures of Mozart and Cherubini. It remained on exhibition on the firm's premises for a quarter of a century. It had three huge barrels, each a couple of feet in diameter, and it is my impression that these barrels were not in alternative but in simultaneous use. (As not merely the performance of the notes but also the changing of the stops was mechanically performed, perhaps the multiplicity of barrels is thus ac-
counted for; the picture before me shows one long barrel in the middle and smaller ones on each side of it.) Like most such instruments on the larger scale, this one could be played by hand. The blind organist, John Purkis, was one of the earliest "hand" performers. Thomas Adams (" the Thal"erg of the Organ," as Grove calls him) "for many years superintended the annual evening performance on the Apollonicon." I do not know what this "annual evening performance" was-probably an annual season of evening performances is intended. From The Harmonicon of 1830 I learn that Purkis had been for many years giving regular Saturday recitals, and the editor, with an apology for having neglected hitherto to notice the interesting instrument, assures his readers that "there is not, perhaps, an exbibition in town at which their time or their money will be belitr or more satisfactorily bestoyed."

We have heard lately of Sir Walford Davies' ingenious introduction of a console for a second performer at St. George's, Windsor. Although from what we are told as to the recitalizing of Purkis and of Adams we may suppose that the Apollonicon could be satisfactorily manipulated by one individual, it could, if desired, accommodate as many as six ! I see in the picture of it six reading desks, and Busby's Concert Anecdotes (1825) declares:
"It is furnished with six distinct collateral sets of keys, which are simultaneously performed on by as many different performers. These, acting in concert, develop the various powers of organic construction, and operate on the nerves and feelings of the auditors in a truly surprising manner."
It is clear from this that the Apollonicon was three times as good an instrument as the present-day Windsor one.
It is curious to note that, whilst Flight and Robson were busy spending their ten thousand pounds on their nineteen hundred pipes and concomitants, a somewhat similar instrument to theirs was announced to be exhibited in

London. This was Maelzel's "Panharmonicon," the London placard of which, reproduced by Busby, promised "the Grand Symphony of Mr. Beethoven, so well known and admired in London." But apparently Londoners never heard the " Panharmonicon," for Maelzel quarrelled with his friend "Mr. Beethoven," who was to have accompanied him, but who, instead, wrote begging the musicians of London not to support the project. It will be remembered that Beethoven's Wellington's Victory, with its Rule, Britannia; Marlbrook ("For He's a Jolly Good Fellow "), and God Save the King, was composed in expectation of this visit and planned for the Panharmonicon, so not only are Handel and Mozart to be numbered amongst composers for the Barrel Organ, but we may almost also claim Beethoven. (If we include the once popular instrument, the "Flute Clock," we may add Haydn to the list, for he wrote pieces for it, as did also his brother Michael Haydn, C. P. E. Bach, Friedemann Bach, Quantz, Graun and Kirnberger-see Leichentritts' article in the Musical Quarterly for January last, Beethoven wrote for this instrument also.)
I suggest that it may have been the publicity resulting from the display of the Apollonicon and similar instruments that led to the widespread adoption of barrel organs in church use in the early part of the 19th century. All these instruments, from giant to pigmy, are on the same revolving cylinder principle (a principle which was probably first adopted in connection with the Carillon and which, I understand, has been applied to it from the 13 th century).
Bryceson, of Tottenham Court Road, seems to have been active in supplying churches with barrel organs, and an advertisement pasted inside that now to be found in the Wesleyan church at Rowde, near Devizes, affirms not only his conviction that "the Tunes are so correctly set as to be equal in performance to " Finger Organ," but also his belief that the "Barrel" instrument will "entirely supercede" its "Finger" rival.

The " great Expense of a Finger Organ and the Salary of an Organist" are given as the foundation of this rather too sanguine expectation. For " so Guineas to 100 or upwards," says Bryceson, he supplies "excellent Barrel Organs, built on a peculiar Construction and adapted for the service and dimensions of any Cburch."
But long before Bryceson Barrel Organs had been made for and sold to churches, and according to John Arnold, in his Compleate Psalmodist (1761), some of them performed not only " our ancient Psalm-Tunes, with their Giving-out and Interludes," but also a " Set of Voluntaries." There are a number of church Barrel Organs in existence to-day (and one or two even in use), but I have never heard of one that supplies more than the tunes of metrical psalms and hymns plus three or four chants for the prose psalms and canticles and (occasionally) a set of Responses for the Commandments.

Arnold strongly recommends "Mr. Parker, Organ Builder, at the lower end of Gray's Inn Road, Houlborne," as being "very eminent in his profession." He says that "Box-Organs" are for sale " of a very small structure . . . likewise of the machinery kind," priced at ten to fourteen guineas, on the barrels of which organs you might have set "Tunes of your own chusing."

The Barrel Organs still to be found in our churches have four to eight stops. Many, apparently, are blown as well as played by the turning of the winch, but I should suppose this not to be so with those that include chants on their barrels, as the ceasing to turn the handle for the holding of the reciting note would let the wind out. Some enthusiast with time on his hands ought to make a tour of inspection of these organs and supply us with a full and careful description. The following are all the churches in which I know them to exist (my list being largely compiled from the unexpectedly large correspondence I received as a result of a recent article on Barrel Organs in the Radio Times):
(i) Barnston, Essex.-Built by Bev-
ington. Five barrels. Still in some use. The Rev. R. L. Gwynne, Rural Dean of Dunmow, reports to me that when he took duty in this church lately the organ "played fine voluntaries before and after the service." Will not some musician make an investigation and tell us what these voluntaries are?
(2) Black Chapel, Essex.
(3) Bobbington, Essex.
(4) Brightuing, Sussex.-The famous instrument given to the church by the eccentric Squire Fuller. This organ was in regular use up to 1913, and since then has been used on alternate Sundays for voluntaries. At the funeral last year of Mr. Herbert Croft, Parish Clerk (who played it for 40 years-up to 1931), his favourite hymns were accompanied by it.
(s) Bussingham, near Diss.
(6) Cheshunt, Herts.
(7) Compton Wingates, near Ban-bury.-In a private chapel. Two barrels, each with eleven tunes. Four stops. Not now in use, but in good order.
(8) Faulkbourne, Essex.
(9) Fobbing, Essex.--Built by Bevington.
(10) Henley, Suffolk.
(ii) Holme, near Spalding.-Three barrels; 24 tunes and 6 chants.
(12) Kilton, Somerset.-This must be an unusually late specimen, for Mr . J. T. Lightwood, author of our standard work on Hymn Tunes and editor of The Cboir, states that its tunes include some not in use until 1860.
(13) Long Compton, WarwickShire.
(14) Milton, Cambridgeshire.
(is) Muchelney, Somerset.-Built in 1807 by Gray \& Davison. Twenty-five hymns, 3 chants, and responses to Commandments. A correspondent in March this year told me that there was then a proposal to give a recital on the Barrel Organ to raise funds to repair the Finger Organ. It seems to be adding insult to injury when the discarded is called upon to support its supplanter I However, this recital may not have taken place,
since one of the oldest inhabitants gave the warning on hearing the proposal, "There beant nobody in Muchelney to-day that could play un like John Waldern used to do."
(16) Pennard, near Swansea.-Said to be of 18 th century date.
(17) Rowde (Wesleyan), Wilitshire. -In good order but not now in use. Four stops, Stopped Diapason, Principal, 1 the and isth. (When you draw the Principal, the isth comes with itcurious I)
(18) Shelland (between Stowmarket and Bury St. Edmunds).-Built by H. Bryson, 38 Long Acre. Six stops; 3 barrels; no chants (selfblowing). In regular weekly use, although the church contains another organ. Mr. Ashton Long, of Diss, reports to me a recent visit: "When it came to chanting the Psalms, the Chaplain left the lectern and tried to play them on the finger-organ. But it was damp and would not work. There was ${ }^{2}$ a squeak, grunt and growl. He said, 'She won't go; we shall have to read them.' It was a revelation to hear the congregation keep in tune with the old organ and pause when twiddly runs came in. I have been to many a cathedral service and not enjoyed it half so much."
(ig) Sutton, Northants.-Built by Walker.
(20) Trottescliffe, or Trosley, Kent.-Built by Bates. Six barrels each with 10 tunes (a big repertory l) Very sweet toned. In use up to 1899.
(21) Weavenham, Cheshire.
(22) Wiston, or Wissington, near Colchester.-The clergyman reports that they have only to advertise that the Barrel Organ will be used to get a large congregation. It is said to have a very mellow tone, but the mechanism is heavy and the pace consequently slow.

It will be seen that most of these instruments are in the South of England and that Essex scems to be predominant. I understand that at Arnold's Old School Organ Works, Thaxted, Essex, there are to be seen several barrel organs removed from churches.

My friend George Parker, Mus.D., of Over Hulton, Bolton, writes: "I have a Barrel Organ where the handle works both the blowing and the barrel, so what of Chanting here?" Colonel Λ. S. Bates, of Marydown Park, Basingstoke, tells me of three in one family-one given by his grandfather to the church of Wootton St. Lawrence about 1872 (and apparently still there, though, like many such instruments, now unbarrelled),
one he himself gave to Basingstoke Museum, and one in his store roon. And Mr. Walter Hart, chiropodist, If Ramsgate, offers to sell me a Barrel Organ by Flight \& Sons, with three barrels and in good order. Alas I of how many fine things would I like to be the proud owner !

But what is a chiropodist thinking of to sell a pedal-less instrument? It isn't business !

The following open letter has been received from Dr. Cyril de Vere Green, Founder Member and Secretary of the Musical Box Society of Great Britain.

This issue of our Journal coincides with the handing over of the position of Honorary Secretary of your Society to Mr. John Entwistle.

During the past few months, it has become apparent to me that my professional and academic commitments have been increasing, and I have found it difficult to devote my time and resources to the affairs of our Society as I would wish.

May I therefore use a little space in our Journal to express to our Members throughout the World my sincere thanks for all the loyal support which you have given me during the past eight years. I wish also to acknowledge the encouragement, helpful suggestions and the practical help which has been given to me by the Officers of the Society, and also by my wife Bertha, in the execution of my duties.

I should like to assure our Members and our new Secretary that the Society will continue to receive from me all the support which I am able to provide.

As a Founder Member, I have been particularly gratified at the way in which the Society has developed from a handful of fellow enthusiasts to the international body which it today forms. That I have been able to play some part during these years has been a privilege for which I thank you all.

Small snuff box in painted wooden box. The comb is $21 / 2$ inches long and is stamped "H.Lecoultre". From the collection of Keith Harding.

1. Overtare to OBERON. \qquad and March from the Thames Porfer	Weber. C.Kreuzer.
2. GRAND SYMPHONY in G, with Fugne Finale	
3. Overture and Barcarole to MASANIELLO...........	Anber.
4. Four Pieces from the Creation. ..ason..................	Haydn.
1. Introduction, repreaenting Chaor and Light and Sem 2. The Marvellous Work behold amaz'd. 3. On Thee all Living Souls await. 4. Accomplished is the glorious Work.	Chorbs.
5. TwoW altzes, by Mozart, \&c severalOriginal W altzes, composed expressly for this Instrument, by. .	C. Kreuzer.
6. Overture to William Tell.	Rossinj.

* * This Instument unites the full effect of a first-rate Orchestra, with the appropriate modulations, pauses, aad cadences, in the most splendid style; the solos and accompanimenta being as aeparately, diatinetly, and accurately performed as ahough played by distinet iustruments, and by artists of the first ability. Independent of its Mechanical arrangemente, it is furnished with two rows of keys for the fingers, and a row of pedals for the feet. By the Musieal and Mechanical World, this Instrument is allowed to be the fineat specimen of art ever produced in this country, either for its beautiful and musical expression, or its ingenious and highty fnished meshanism.

The Proprietors. Messra J. KLEY 8ER \& CO., most respectfully inform the Nobility, Gentry, and Public generally, that they have continually on alale at their Establivhment, 66, High Sureet, Borough, a large aasortment of smaller Selfracting Instruments, Musical Boxes, Clocks, Geners Watches, \&e. \&c.

Wake and Repsir all sorls of English and Forsign Clochs, Watches, Musical Snusf Boxes, Barometers, Thermomelers, tec.
LAY-FIGUREROF ALI, SIZES.
Importers of finc-lomed Yiolins, Forcign Clioole, Feary Artiches, Roman Slringy,
Seraphina, Bird Orgata, Aecordions, \&re. \&e. \&c. WHOLETALE RETAIL, AND FOR EXPORTATION.
E. a J. THOMAS, Pifatera, 6, Exeter Sireet girado

FANCY PORTRAIT OF THE NOBLE LORD WHO FINDS ORGAN-GRINDING AN "AGREEABLE RELIEF."

Pianos Jrélodieux

de la fabrique

G. Racca à Bologne (Italie).

Ces instruments mécaniques n'ont rien de commun avec les autres instruments congénères comme les Aristons, Simphonions etc.
Les Pianos Mélodieux ont une voix aussi forte qu'un bon Piano, et la note tenue comme les harmoniums.
Avec ces instruments on peut obtenir les plus délicates nuances d'expression.
Exiger la marque de fabrique sur les Pianos et cartons musicaux pour n'être pas victime d'imperfectes contre-façons.
 10000 instruments vendus.
Exportation. -4 differents modèles à 4 et 6 octaves.

J. IV. Grob \& Co., Eutritzsch bei Leipzig

empfehlen als besonders absatzfahig ihre patentirten Neuheiten: Klavierspielér 36 Töne neue Construction
eignet sich zum mechanischen Spielen auf allen Tasteninstramenten, wie Pianino, Flügel, Harmonium ete, mittelst der bekannten runden Noten des Riesenaristons. Repertoir, ca. 500 verschiedene Stícke, wird taglich vermehrt.

Klavierspieler 61 Töne!! grossartiger Effectl!

spielt mittelst durchlochter Pergamentnoten Musikstücke von

beliebiger Länge, kurze Tänze, vollstāndige Ouverturen etc.
Beide Apparate aind mit Leichtigkeit an jedem Tasteninstrument anzubringen.
Ferner bitten wis nicht auf Lager fehlen zu lassen:
Ariston, Aristonette, Riesenariston, Orpheus und Symphonion in den versch. Grōssen und Ausstattungen. Alle von uns gefulhrten Artikel abberfreffen in ihrer Güte und Leichtverkäuflichkeit alles Andere dieser Branche and werden jedem Händler besonders durch den fortwithrenden Notennachbezug guten Gewinn bringen.
Cataloge und Notenverzelehnisse in allen Haupteprachen stehen zum Gebrauch oder Versand an die Kundschaft in maBiger Anzahl gratis zur Verfügung.

From "Weltadressbuch der Musikindustrie" by Paul de Wit, Leipzig, 1903. From the library of The Editor

Next Society Meeting

The next meeting of the Musical Box Society of Great Britain will take place on Saturday, November 29 th, at the Great Western Royal Hotel, Paddington, London - our usual venue. A programme of events is at present being prepared by your Committee and details will be circulated by Mr. de Vere Green in due course.

From miniature $1 / 18$ to magnificent 2/50 movements Hundreds of turies, thousands of movements in stock

 Complete boxes from 29s. 6 d . to $£ 32$. Send for our price list and tunes list to :-
SWISSCROSS LTD., 202, TULSE HILL, LONDON, S.W. 2

Classified Advertisements

Advērtising rates for Members are 3d per word

 (Bold type 6d per word). Box numbers are not permitted. Display and semi-display rates are available on request.
FOR SALE

Weber (London) Pianola piano, Boudoir grand Aeolian action. Beautiful instrument, rosewood case. Approximately 60 music rolls (musical comedy selections, dance tunes 1920's \&c.). some hand-played including Paderewski and Percy Grainger. Price for instrument and music rolls f160. Mrs. E.M. Finney, Beaumont Cottage, Beaumont Fee, Lincoln, Lincolnshire.

Will sell or exchange quantity of good-condition 88 -note piano rolls, all dance and song rolls, for good classics or interesting light music, NOT selection rolls, please! One for one basis, no lists. Ord-Hume, 14, Elmwood Road, Chiswick, London, W.4.

WANTED

Want LIBELLION Music. Folding, perforated cards, each fold approx. 6.1/." $\times 11.3 / 8^{\prime \prime}$ and $10.1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ square cutouts, to each
fold, in $1 / 2^{\prime \prime}$ wicie metal insert centred across each $6.1 / 4^{\prime \prime}$ width. Advise condition and price. Who ean repair to new condition, separated cards with some torn metal? C. Reynolds, 6378 Camino De La Costa, La Jolla, California, 92037, United States of America.

Old player piano actions, especially 65 -note stacks and tracker bars. Please don't offer complete pianos - only the player action.
Ord-Hume, 14, Elmwood Road, Chiswick. London, W.4. Tel: (01) 994-3292

APPOINTMENTS

Keith Harding has vacancies for full-time craftsmen. Disc musical box specialists particularly required. Excellent pay and conditions.
Apply to Keith Harding Antiques, 93, Hornsey Road, London, N. 7.

The Lochmann Konzert Piano described in the letter on the opposite page. Above: This view shows the dulcimers, hammers and damper bar as well as the chain drive from motor to starwheel row. Right: The complete instrument restored, but not tuned.

Left: General view inside cabinet showing the divided harp or 'sublime harmonie' arrangement and the disc pressure bar. Below: Here the disc pressure bar is in the fully lowered position. The dulcimers were not fitted when this was taken.

Member Leonard Elliott, curator of Bryan Jackson's Museum of Sound Technology and Transport, Auckland, New Zealand, writes:

Would somebody please help, I am losing my hair, getting splinters in my fingers (from scratching my head), will need glasses soon (from reading for information) and getting like a bear with a sore head from frustration. What's causing all this chaos? Well, the answer is very simple, a Lochmann Konzert disc paino.

I have completed; from a pile of rotting timber and rusting metal found leaning against a fowl-house, the restoration of this unusual instrument. You ask yourself, "Well, what's wrong, he should be happy." My nemesis is, it won't play! Dash it, there goes some more hair again. The coin in slot mechanism works perfectly, the motor motors as it should. the 2051b. weight winds up and drops at the right speed; in fact everything is perfect, well almost. The only item I can't get right is the tuning.

The 64 strings, in two banks of 32 have defied the efforts of the piano tuner and myself to make the disc play something that resembles the 'Light Cavalry' overture by Suppe. The problem we encounter is when the bass string is tuned and rising in $1 / 2$ note graduations the last few treble are so tight they break. When working in reverse, the bass strings are so slack they don't sound. So please, if you don't want me to go bald, blind and batty, I implore you, please help a fellow enthusiast from the bottom of the world. I will answer any letters regarding this machine.

The technical details of the machine which is causing all this trouble are: It stands 62 ins. high, 32 ins. wide and 22 ins. deep without the base. The string frame is like a rounded-off pyramid. The $253 / 4 \mathrm{in}$. disc has a rolled edge and the disc pressure bar which is mounted horizontally folds out to allow the disc to be positioned. The outer peg activates 10 horizontal removable tube bells - five either side - mounted on cast iron frames directly above the motor dividing board. The coin slot is on the right which drops to a circular cup, and this cup is tipped sideways allowing an arm to protrude through the base of the cup to displace the penny. A bicycle type chain transmits the power from the 205 lb . iron weight driven motor to the periphery wheel mounted on the right of the divided star wheel rack. The star wheels activate small hammers

LETTERS TO THE EDITOR

to strike the double strings. The reason fo having only one disc in playable condition a the moment is that the others were used as 22 calibre rifle targets, and those not punctured r affected with rust and missing protrusions.

This letter may seem disjointed, but to ons in my condition what else can be expected. Ou museum is expected to open at Easter 197(which makes my request urgent.

It may seem unbelievable, but even thougt I advertised on radio for the piano score of the 'Light Cavalry' overture, as this is the only legible title, it did not bring a single reply. Sc back to square one and more splinters. On bended knees I implore you, HELP!

EDITOR'S COMMENT

As Mr. Elliott states, the Lochmann Konzert is a rare instrument and I have no notion of the tuning scale. But, since this instrument is not a tremolo piano, and since the hammer action of this type of instrument is inherently slower than, say, that of a comb-playing movement, I feel it likely that the tuning of all but the bass notes probably includes unison notes. The tuning is therefore likely to be arranged like a sublime-harmonie Symphonion rather than, say, a Mills Violano piano. This suggests that one note on each half of the harp will be tuned to the same pitch. Mr. Elliott does not state whether the notes are bi-chords or tri-chords. It is unusual to find an instrument of this type without the scale marked somewhere on it $-a$ favourite of the zither-makers and mechanical dulcimer-makers was to stamp the scale actually on to the head of each wrest pin in the wrest plank. Unless any Member can provide the actual tuning scale, I think Mr. Elliott will just have to fortify himself with suitable liquid stimulant, lock his workshop doors and experiment. I doubt if the scale is fully chromatic. The score of Suppe's 'Light Cavalry' overture will be of only limited help, I feel, since the disc arrangement will certainly be an abbreviation, concentrating more on the theme. It is possibly this which he will do best to experiment with. Any comments or advice from anyone else?

LIST OF MEMBERS

415
J.G. Fox, Coton, Exton, Exeter, Devon.
416 W.G. Brown, 11, Kitson Road, Barnes, London, S.W. 13.
$\dagger 417$ Dr. J.R. Heyworth, 1683, Renfrew Street, Vancouver 6, B.C. Canada.
$\dagger 418$ Philippe Rouille, 2, Avenue du Stade de Coubertin, 92 Boulogne, France.
$\dagger 419$
Mr. Cooprider, 6751. Hohenecken, Sommerstrasse 14, West Germany.
R. Trender, 143A, Askew Road, London, W. 12.
$\dagger 421$ \}R. Burgis, 8, College Crescent, Hornsby, New South Wales, Australia, 2077
CHANGES OF ADDRESS128K. Thompson, "Grange End", 8, Byron Close, Bletchley, Buckinghamshire.R. Coulson, 24, Biddlestone Road, Heaton, Newcastle-upon-Tyne 6.
ROBERT BURNETT
XVII - XIX Century Clocks, Watches and Musical Boxes
My Stock normally includes:

Musical Boxes of the normal cylinder or disc type. Musical Snuff-Boxes and Singing Bird-Boxes.
A Good Selection of Carriage Clocks, including several of the rarer types, e.g. Miniatures, Quarter-Repeaters and Grandes Sonneries.
A variety of Ornamental or Unusual Clocks, including one or two Marine Chronometers. (No Long Case Clocks).
A Selection of XVIII Century Watches and some later Complicated Watches, such as Pocket Chronometers and Minute Repeaters.
Visitors are welcome, Guilsborough is about 10 miles north of Northampton and about 8 miles east of the M1, which one should leave of Exit 18 by the A 428. This is the best way whether travelling north or south.

An appointment is desirable, but not essentiat.
15, CHURCH MOUNT, GUILSBOROUGH, NORTHAMPTON,
Phone - Guilsborough 333
THE MUSIC BOX is designed by Arthur W.J.G. Ord-Hume and printed by Litho Arts, 32, South Audley Street, Mayfair, London, W.1. and published four times each year by The Musical Box Society of Great Britain at 11, Devonshire Place, Wimpole Street, London, W.1. IBM setting of the text by Montagu Watson, 40, Buckingham Mansions, West End Lane, London, N.W.6.

interested in MUSICAL BOXES?

IT'S SILLY TO RELY ON LUCK WHEN YOU

CAN RELY ON

WHO HAS THE LARGEST SELECTION

IN ENGLAND AT

93, Portobello Road, London, W.11.

Telephone: 01-727-1485

Buses $12,15,27,27 a, 28,31,52,88$ pass close by

Nearest Underground Notting Hill Gate

MECHANICAL

Are YOU interested in Musical Boxes?

Small Barrel Organs or
Reed Organettes ? Fairground Organs ? Musical Snuff-Boxes?
Singing Birds (automatic ones!)?
Musical Auṭomata of every other kind ?
If you are, then you will quite probably derive immense enjoyment leading to a greater fulfilment of your interest by becoming a Member of

THE MUSICAL BOX SOCIETY OF GREAT BRITAIN

The aims and objects of the Society are extremely simple. The Society exists to bring together all those who share a common interest in the collecting, preservation and appreciation of all types of mechanical musical instruments.
What for? What good does the Society do? The Society brings together fellow collectors from all over the British Isles and many foreign countries including Switzerland - the accredited birthplace of the
musical box as we know it.
The Society publishes a quarterly Journal called THE MUSIC BOX which is devoted to articles on all aspects of musical automata, repair and overhaul tips, descriptions of fine and unusual musical movements and, of course, it circulates Members addresses. The MUSIC BOX is fully illustrated.
Membership to the MUSICAL BOX SOCIETY OF GREAT BRITAIN opens up a whole new world of musical box appreciation. Wherever you live, up-to-the-minute news of members and collections reaches you through THE MUSIC BOX. Twice a year, a full day meeting is held at which all members and their guests are invited to attend. Ultimately, regional meetings, film shows, lectures and demonstrations will be encouraged.
How much does all this cost ? Just THREE POUNDS (U.S.A. \$6; per year! If you are not convinced that Society membership can benefit you, why not send $5 /-$ for a specimen copy of THE MUSIC BOX ? Judge, critically, for yourself.

The Musical Box Society of Great Britain.
11, Devonshire Place, Wimpole Street, LONDON, W. 1.

Binders

Keep your copies of THE MUSIC BOX neat, clean and immediately available for reference. Strong, durable binders in red rexine with gilt title on spine made to hold two years' issues of magazines, directory and index. Your copies can be inserted or removed in a moment. There is no need to mutilate your magazines by punching as each one is simply retained on a wire.

Post and packing free 14/- each.
(\$2 U.S.A.)

Available from: The Secretary, Musical Box Society of Great Britain, 11, Devonshire Place, Wimpole Street, London, W. 1.

[^0]: * This piece of mechanism is shown, together with the Automaton Chess Player, at 4, Spring Gardens.

[^1]: * There can be little doubt that the peculiar action of the Automaton (p. 24), by which the Knight is

[^2]: S. Gusnell, Pranter, Little Queen Street, Ionden.

[^3]: LONDON: Printed by T. Parker, and fold by Mr. Stephen Varillon at the Long Room, at the Opera Houje in the Hay-market, where thefe Mechanical Figures are to be feen at I_{3} 2, 5, and 7,9 0^{\prime} Clock in the Afternoon. 1742.

[^4]: * A Line is the twelfth Part of an Inch.

[^5]: * I have a suspicion that "clock" in such a connection sometimes means merely "clockwork."

